Precalculus

1-04 Functions and Functional Notation

Relation

Rule that relates _______

Function

- Special _____
- A function f from set A to set B is a relation that assigns each element x in set A to
 _____one element in set B
- Set A: _____, ____,
- Set B: _____,

Is this a function?

X	-2	-1	0	1	2
у	-8	-1	0	1	8

$$x^2 + y = 4$$

$$x + y^2 = 16$$

Functional Notation

If
$$f(y) = 3 - \sqrt{y}$$
, evaluate

$$f(4x^2)$$

Piecewise functions

Function made of _____function with specific ______

$$f(x) = \begin{cases} 2x + 1, & x < 0 \\ 2x + 2, & x > 0 \end{cases}$$

Evaluate f(-1)

f(2)

Precalculus 1-04	Mama
Precalculus 1-04	Name:

Domain of a function

Implied domain - all real numbers for which the expression is _______

Interval notation

- [] means ______
- () means _____
- (2, 7] means _____

What is the domain?

$$h(t) = \frac{4}{t}$$

$$f(x) = \sqrt{5x - 8}$$

Difference Quotient

$$\frac{f(x+h)-f(x)}{h}$$

Simplify the difference quotient for f(x) = 2x + 1